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e Problem 1: Adequate modeling of the wave dissipation in the focal region

- The currently adopted GO model predicts unphysical infinite power absorption.
- Beam tracing is not an option, the beam profile must be actually calculated.
- The existing general quasioptical theories are controversial.
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Abstract

A quasi-optical description of the propagation and damping of the slowly varying wave amplitude across an arbitrary
electron cyclotron wave beam is presented. This model goes well beyond those implemented in existing beam tracing
codes, which typically require the spatial inhomogeneity across the wave beam to be small. The present model allows
an accurate description of the wave beam evolution in the region of electron cyclotron power deposition, where the
latter condition is quite generally broken. The additional physical effects from spatial inhomogeneity and dispersion
included in the quasi-optical model are discussed in relation to their consequences for the power deposition profile.
Quite generally, a broader power deposition profile is obtained in the quasi-optical calculations. The importance
of these effects is analysed in a number of scans varying the injection geometry for typical conditions in both the
ITER and the TEXTOR tokamak. Optimization of the power deposition profile towards a minimal width is found
to require a focused wave beam with a waist of typically 2 cm width localized near the electron cyclotron resonance
region. Calculations are also presented for beams injected from the ITER Upper Port electron cyclotron resonance
heating (ECRH) launcher as it is currently being designed. These show that the additional power deposition profile
broadening from quasi-optical effects may result in a drop in the predicted efficiency for neoclassical tearing mode
or sawtooth control by up to a factor of 2.
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e Problem 2: accounting for the O-X mode conversion at the plasma edge

A single-mode (O-mode) operation is desired in the plasma core.

A strong magnetic shear couples the O mode to the X mode at the edge.

Need to find conditions at which the wave reaches the core as a pure O mode.
So far, only 1D full-wave simulations have been available.
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Kubo et al, AIP Conf. Proc. 1689, 090006 (2015); Tsujimura et al, Nucl. Fusion 55, 129019 (2015); Notake et al, PPCF 47, 531 (2005)...
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NIFS's rationale for the collaboration: the mentioned problems might be solvable using
extended geometrical optics (XGO) that we recently developed.’

e Introduction

- GO and XGO for nondissipative waves
- A new ray-tracing code with adiabatic XGO corrections

e New results:

0. A general 2nd-order reduction for dispersion operators of coupled waves
1. A quasioptical equation for beams with mode conversion (being coded at NIFS)

2. An analytical theory of the O-X mode conversion in edge plasma

Dodin, Ruiz, and Kubo, arXiv:1709.02841

'D. E. Ruiz, Geometric theory of waves and its applications to plasma physics, PhD thesis (Princeton University, 2017).



~... — Preliminaries: a variational approach to ray tracing

e Assuming Hermitian &, the wave equation has a variational form 65 = 0. The
action S can be represented as an asymptotic power expansion in the GO parameter.

DE=0, D=c0?[kk-1(k-k)]+¢&(t,x,&,k), @=id, k=—iV

:S%SEIA)Edtd%=SO—I—651—|—6252—|—..., e =M\/L
e The zeroth-order truncation gives geometrical optics: /\
S[0,Z] = — {[6:0 + wo(t, x, VO)] T dt d®x y L

e “Point-particle” limit: Z = hé(x—X(t)), K = VO(t, X(t))

S[X, K] = {[(hK) - X — hwo(t, X, K)] dt

X = dxwo(t, X, K), K = —dxwo(t,X,K) ho(z — X (t,x))



D) PPPL The next-order theory is “extended geometrical optics” (XGO).

PLASMA PHYSICS

AAAAAAAAAA

e The first-order corrections are not diffraction but corrections to GO:

S=—0[00+w(t,x,V0) —ial (0, + V-V)a—a'U(t,x, VO)a|Z dt d*z

e The point-particle limit gives modified ray equations and amplitude equations:

SIX,K,Z,Z ~ h{[K - X —w(t,X,K) + (212 - Z!Z) + ZTU(t, X, K)Z] dt

i
2

0X : X = &Kw — ZT(&KU)Z
O(e) CZ)rrrection

K : K = —Oxw + ZT(§XU)Z,

“Stern-Gerlach”

0Z': iz =-UZ
mode c:):wersion

Ruiz, PhD thesis (2017); Ruiz and Dodin, Phys. Plasmas 24, 055704 (2017); Phys. Rev. A 92, 043805 (2015); Phys. Lett. A 379, 2337 (2015).



...~ Ray-tracing code with adiabatic XGO corrections

e Simulations were performed using a MATLAB-based ray-tracing code that replaces
the earlier prototype by Daniel Ruiz. The code is based on the following theory:

- In GO, the zero eigenvalue of the local dispersion matrix serves as a Hamiltonian:

Dy =0 = detD(X*K,)=0 = DyX* K,)=0

det D(X" K,) = | [ Dy(X*, K,.) = Do(X*, K,) (X", K,
q

+~ \\

Y Y
zero eigenvalue  nonzero factor

- In adiabatic XGO (Z = const), ZTUZ serves as a correction to this Hamiltonian.

~ 0D, (_y OB 0D, (i OB 0= 0
D=Do—5 (“ @Xa)A T oxe (“ aKa)A+ [(&Ka (D= Dol){ 7xa )

dX* oD(X* K,) dK,  0D(XMK),)

dT 0K, ’ dT OXH

Ruiz and Dodin, Phys. Plasmas 24, 055704 (2017).
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e The new code accounts for ions, has a modular structure,
benchmarking, and two representations of D in laboratory coordinates:

- Assuming the wave equation in the form DE = 0, one can use

six solvers for

2 2 2 2 2
C 2 wp s wp s(a ) QS) wp s (a ’ ﬂs)
D=—(kk—-k“1)+1+ -1 4+ = — =
w2( ) ZS][ w? w(w? — Q2) w? w? — 0?2
0 0 0 0 i 0 —i 0
aa;<0 0 z) ay( 0 0 0), az(z’ 0 0)
0 i 0 i 0 0 0O 0 0

- Alternatively, one can use (id; — H)1 = 0, where ¥ = (viy/Arnima,...; E, B)T.

Orvs = (es/ms)E + vg x Qg/c, 0E = —4meng svs + ¢V x B, 0B =—-cV xE
( w+ a - 2(x) 0 0 —iwp 1(X) 0 \
0 w+ a - Ns(x) 0 —iwp 2(X) 0
2 : : : o :
0 0 w4 a- Qa(x) —iwp a(x) 0
iwp,1(X) iwp 2(X) iwp A (X) w —ico - k
0 0 0 ca - k W )




FL# Weyl expansion of a dispersion operator
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o For an oscillating field 1) = Re (e??®¥), one can introduce an envelope operator:

A

Dyp—0 = DU—0 D=e 0D

o D= @(x, —i0x) can be mapped to a function, approximated using ¢ = A/L as a
small parameter, and then mapped backed to the operator space.

e A suitable mapping is the Wigner-Weyl transform: Wg = EE" — Wg

W: A A(x,p) = ((x+5/2|A|x —s/2) e P*d’s

_ ~ —1i1p-X s
WA A= [lx—s/2) A(x, p)e ™ (x+5/2] dxd'p L

f&) o f(x), fB) < flp), 3[fEP+DfF)] < fx)P

D ~ D(x,00) + L[(=ids) 0 V* + V4 0 (=id%)] + 3 (—ids) 0 9% o (=idg) — x (aiﬁﬂaﬁ) + ...

Y Y ~"

0(€Y) O(el) O(e2)

k(x) = 20(x), V*(x) = [(D(x, P)/Palp-kigs 0" (%) = [0"D(x, P)/2PadPslp-kix
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0= D¥ ~ [D(x,k(x)) + D + 2p? + ... |

o Let us represent the field in the basis of D(x,k(x))’s eigenvectors 7,;:

N Ne¢ _ passive mode #2
\:[l T Z =1 ,r'qaq + Z :N—|—1 nqaq B e
q q=iN-+L1-0f4-H5 e T e

0 two active modes
ag = O(e ) — “3ctive” modes Nmm
a, = O(e') - “passive” modes

_____________

e Active modes are excited externally or through |
mode-conversion. Passive modes are adiabatic.

e By projecting the wave equation on the active- and passive-mode subspaces, one
can obtain a reduced equation that contains active modes only:

Daaa + ’Daaf_l =0 ~ ~ ~ —1 ~
; ) . [ Do — Doa D,, Dau |a~0
Diva+ Dzgga=0 = 3a= _DaaD&aa = _ Y~

?6/ O(e) O(e)  0O(1) Ofe

The contribution of passive modes is O(e?), so it cannot be neglected.
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D = EDyE = diag{\1 ... A\n}, E= (1 ...1y)

(TIN+1 "INC)

M)
|
[
)
Ay
[1]
I
r
Q
0
>
2
L
>
Z
[1]
I

1]

V=0D+V, V=iE(0DAsE - (&EDE — E'Dy(0E) = O(e)
I =ED4E, U=_i[EV0.E) - (.ENVE]
A = 3 (—i0a) 0 9% (x,k(x)) 0 (—idp) — § 05 g0 (x, k(%))
A = 1 [(=ida) o V(x, k(%)) + VU(x, k(x)) 0 (—i04)] + iD a(x, k(x))
o Method: (i) use ray tracing with Hamiltonian Tr ®(x, k) to find k(x) that
eliminates O(1); (ii) calculate the remaining matrices and solve for a(x).

o The density of power absorption can be calculated using P.ys ~ (w/87)a'T'a.
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o Consider ray-based coordinates with £ along rays and p perpendicular to rays. If
O¢ « 0,, then O(@?) is negligible. Denote £ = N 'Tr® and € = ® — £1. Then,

0E 0 % 0 0
et e

1 N
V-V —T+iE—-U)|a=0
Oke 0€ pr 2opn S o TV i >]a

~a  0E\ OpH opH g op”
sSVH = (V™ + , e = g9 - 2vED E'V)E
( 8ka) ox® ox® ( v V) oxP

e Proposed method for modeling O-X coupling on LHD:

|a| has saturated but a remains slow
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.~ Reduced analytical theory of the O-X mode conversion at the edge

o If, at the edge, one can adopt constant k = (w/c)ex and neglect both diffraction
and dissipation, then the O-X mode conversion is tractable analytically.

(D - iV-V—(i/2)(V-V)-Ula~0
- Assuming the wave equation in the form DE = 0, one can use

D(x,p) = (c/w)*(pp' —p*13) + L3+ x(x)
D;Zp) perturbation

- Approximate eigenvalues of D (cf. the quantum formula AE, ~ (¢ 4|H1|1y)):

D, ~ Do(p) + (nlxn,)(x,p), Do =1-(pc/w)?, V ~ (—2k/k*)1
Dy O ) : n| n - ) < a; >
D = , U=-2 . p : =
( 0 Do ’ ( _(77;"’72) "7;"’72 N as

Dodin, Ruiz, and Kubo, arXiv:1709.02841.
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e Polarization in the vacuum limit [ = Z(k,By), g12 = v~ F (sgnu)v1 + u=2]:

—cos ¥ . —cos ¥
1 788N U

m=—F—— 191 ; Ny = ——F—— 192
4/14—9% sin 9 «/14‘9% sin Y

e The equation for a is similar to that governing a two-level quantum system:

ia = Ha
q — aq ’ % _ €3 — ,0/2 €1 — ’1:62 _ —O*é —’LB
ao €1+ i€ca  —€3+ p/2 i3 «
u/ 5 ¢ Cu
€1 = — =

= —, € =——-—=¢(cosd, €3 =————=¢(sind
w2 T ¢ T ire ©

2w(e - b) (ex x b) - b 2|Q|w§ Q2
_ | _ | _ b)2 4+ —— (b x ey)4
YT Qer x b)2 (ex x D)2 P = o —am\ & P e (b xey)

Dodin, Ruiz, and Kubo, arXiv:1709.02841.
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e In the right variables, ia’ = Ha is parametrized by just one real function, s:

di1,2 = CL1,2€$”/2, y=argf, s= (04/‘5\) - "7/27 T = SW dl

A

mode-conversion region | adiabatic region

zi q1 _ -5 — q1 (low-density egde) I (dense core)
dT 05 Z S h) I

cf. Landau-Zener:

G IR

0 T

e Similar equations emerge also in other mode-conversion theories, but in those
works, s(7) is usually approximated by a linear function under the assumption that
the resonance region is localized (Landau—Zener paradigm) = Weber equation.

Mode conversion in edge plasma is qualitatively different from the standard
Landau-Zener problem because, at the edge, s is strongly nonlinear.

Dodin, Ruiz, and Kubo, arXiv:1709.02841; cf. Tracy et al, Ray Tracing and Beyond (2014).
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e The 2D equation for complex a can be written as a 3D equation for a real “spin”:

H==10,8" B=(e,e,e3—p/2)T, S,=alo,a

ia=Ha = S =BxS

e If B is slow, the precession plane remains normal to B. In dense plasma, B — e, 5.,
so having a pure mode (S||e,) implies S || B. This is ensured by using Sy || Bo.

o For ¥ = w/2, this means Sy || e,, so circular polarization is needed in vacuum.

b

Sy

Dodin, Ruiz, and Kubo, arXiv:1709.02841.
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Gi+(1+s*—i$)q =0
Q
d [ 2 :
o \/% <1, le, s«
1 i(7) —ig(r) :
a1(7) ~ ICILE [C+e +C_e ]
Re¢%if V1 + 82(F) d7 g
0

1 Lor
Im(b: —511'1 (‘S“l‘ \/1‘|‘82) osf

0.6
04¢
0.2f

2o (D)

0.0

Dodin, Ruiz, and Kubo, arXiv:1709.02841.

®

10 15 20



e = Summary
PLASMA PHYSICS
LABORATORY

o Background [Daniel Ruiz's PhD thesis (2017)]:

- GO corresponds to the Oth-order expansion of the action in e = \/L.

- Extended geometrical optics (XGO) is the 1lst-order theory. It captures mode
conversion and the polarization-driven modification of the ray trajectories.

o New applications/extensions of XGO motivated by a collaboration with NIFS:

- The second-order theory (XXGO) has been developed that captures diffraction.

- Based on that, a quasioptical model of wave-beam propagation has been

proposed for weakly inhomogeneous media. A numerical implementation is now
being developed for modeling ECH on LHD at NIFS.

- In parallel, the problem of O-X mode conversion at the plasma edge has been
solved analytically. It does not fit into the standard Landau-Zener paradigm.
Nevertheless, it has been made tractable by using the analogy between the
coupled-mode dynamics and the spin precession of a spin-1/2 particle.
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